侯憲玉

發布時間:2021-07-14瀏覽次數:8376

教師基本信息

職稱:教授

職務:細胞與發育生物學係係主任

電話:021-31246730

郵箱:stevenhou@fudan.edu.cn

地址:万博英超狼队网官方网 A401-7

 

個人簡介

 1983年獲蘭州大學化學學士學位,1986年獲上海生物化學研究所碩士學位,1994年獲美國芝加哥大學分子遺傳與細胞生物學博士學位。1994-1997在哈佛醫學院Howard Hughes醫學研究所從事博士後研究。1997-2019在美國國家癌症研究所分別擔任Tenure-track研究員,終身資深研究員和幹細胞調控與動物衰老實驗室主任。2020年以海外高層次人才引進到狗万外围充值 以特聘教授任職於狗万外围充值 生命科學院並在代謝與整合生物學研究院和中山醫院雙聘。

 

主要研究方向

生物體質量維持與衰老病變:新協調細胞死亡調控抗腫瘤免疫、神經退行性病變和衰老

本實驗室在過去的20多年裏以小鼠和果蠅為模式動物, 主要研究信號傳導通路和幹細胞在器官發育和穩態維持中的功用, 並獲得了多項重要原創性科學發現。以通訊/第一作者NatureCellCell Stem CellDev CellBloodGenes DevNat communNat AgingCell Reports等雜誌發表研究論文65篇(包括2Cell1Nature),並申請多項發明專利。實驗室培養的人才已有多名在美國和中國做教授。

通過全基因組RNAi 篩選,2016發表的Nature文章報導了一組找到的特異維護幹細胞的基因以及缺失引發細胞死亡的新機製。 在幹細胞中敲除這組基因首先引起細胞器衰老級聯反應,包括脂滴積聚、線粒體損傷、活性氧(ROS)產生、內質網應激和溶酶體蛋白聚集;異常的幹細胞然後發送危險信號激活鄰近細胞;被激活的鄰近細胞最後反饋回來殺死、吞噬並清除受損的幹細胞。 不同於所有已知細胞自主的死亡機製,此細胞死亡是通過多個細胞協調完成的, 被命名為“coordinated cell death (CCD)/協調細胞死亡 隨後的研究發現在小鼠腫瘤幹細胞中敲除或阻斷這組基因可誘發腫瘤幹細胞應激衰老、釋放危險信號並激活係統抗腫瘤免疫反應而有效消除腫瘤,在神經元中敲除或阻斷這組基因可誘發神經炎症-免疫反應而導致神經退行性病變,在衰老的“Zombie”細胞中敲除或阻斷這組基因可選擇清除衰老細胞使機體變得年輕健康。 本課題組現聚焦在揭示新協調細胞死亡的細胞與分子機製並基於此新機製研發全球創新抗腫瘤免疫、逆轉神經退行性病變和抗衰老的藥物。

本課題組現麵向海內外公開招聘青年研究員和博士後,歡迎有誌向的青年才俊加入。

 

榮譽及獲獎情況

 2017美國國立衛生研究所科學突破團隊獎

 2009美國國家癌症研究所所長創新獎

 2006關於腫瘤抑製基因BHD的研究被選為美國國家癌症研究所年度最佳成果

 2001美國國家癌症研究所研究員獎

 2000美國陸軍乳腺癌研究獎

 1997    Charles Harkin (查爾斯·哈金)癌症研究獎,美國

 1995美國白血病學會博士後獎學金

 1994美國NIH博士後獎學金獎

 

授課情況

幹細胞與發育,發育與代謝,細胞發育與健康

 

招生專業

細胞生物學,發育生物學,遺傳學

 

代表性成果

 

1.       Ma, H., Fang, W., Li, Q., Yuetong Wang, Y., and Hou, S. X. (2023).  Arf1 ablation in colorectal cancer cells activates a super signal complex in DC to enhance anti-tumor immunity.    Adv Sci (Weinh) e2305089. doi: 10.1002/advs.202305089.

 

2.       Wang, G., Jin, S., Liu, J., Li, X., Dai, P., Li, Q., Liu, H., Wang, Y., and Hou, S. X. (2023).   A Neuron-Immune Circuit Regulates Neurodegeneration in the Hindbrain and Spinal cord of ARF1-Ablated Mice.  National Science Review10(12):nwad222. doi: 10.1093/nsr/nwad222.

 

3.       Wang, N.,  Yao, T., Luo, C., Sun, L., Wang, Y., and Hou, S. X. (2023).  Blockade of  Arf1-mediated lipid metabolism in cancers promotes tumor infiltration of cytotoxic T cells via the LPE-PPARγ-NF-kB-CCL5 pathway.  Life Metabolismdoi:10.1093/lifemeta/load036. 

 

4.       Aggarwal, P., Liu, Z., Cheng, G. Q., Singh, S. R., Shi, C., Chen, Y., Sun, L. V., and Hou,  S. X. (2022). Disruption of the lipolysis pathway results in stem cell death through a sterile immunity-like pathway in adult Drosophila.  Cell Rep. 39 (12): 110958.

 

5.       Wang, G., Yin, W., Shin, H., Tian, Q., Lu, W., and Hou, S. X. (2021). Neuronal accumulation of peroxidated lipids promotes demyelination and neurodegeneration through the activation of the microglial NLRP3 inflammasome. Nat Aging, 1, 1024-1037.

 

6.       Wang, G., Xu, J., Zhao, J., Yin, W., Liu, D., Chen, W.,  and Hou, S. X. (2020). Arf1-mediated Lipid Metabolism  Sustains Cancer Stem Cells and Its ablation Induces Anti-tumor Immune Responses in Mice.   Nat Commun. 11(1):220. doi: 10.1038/s41467-019-14046-9 (Editors' Highlights)

 

7.       Singh, S. R., Zeng,  X., Zhao,  J., Liu, Y.,  Hou, G., Liu, H, and Hou,  S. X.  (2016).   The Lipolysis Pathway Sustains Normal and Transformed Stem Cells in Adult Drosophila.   Nature 538, 109-113.

 

8.       Liu, Y, Ge, Q., Chan, B., Liu, H., Singh, S. R., Manley, J., Lee, J., Weidenman, A. M., Hou, G., and Hou,  S. X.  (2016). Whole-animal genome-wide RNAi screen identifies networks regulating male germline stem cells in Drosophila.  Nat Commun  7:12149. doi: 10.1038/ncomms12149.

 

9.       Singh, S. R., Liu, Y., Zhao,  J., Zeng,  X.,  and Hou,  S. X.  (2016).   The novel tumour suppressor Madm regulates stem cell competition in the Drosophila testis.

       Nat Commun. 7:10473. doi: 10.1038/ncomms10473.

 

10.   Zeng, X., Han, L., Singh, S. R., Liu, H., Neumüller, R. A., Yan, D., Hu, Y., Liu, Y., Liu, W., Lin, X., and Hou, S. X. (2015).  Genome-Wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila. Cell Reports 10, 1226-1238.

 

11.    Zeng, X., and Hou, S. X. (2015). Enteroendocrine cells are generated from stem cells through a distinct progenitor in the adult Drosophila posterior midgut.  Development 142(4), 644-653. 

 

12.   Zeng, X., Lin, X., and Hou, S. X. (2013). The Osa-containing SWI/SNF chromatin-remodeling complex regulates stem cell commitment in the adult Drosophila intestine.Development 140(17), 3532-3540.

 

13.   Zeng, X., and Hou, S. X. (2012). Broad relays hormone signals to regulate stem cell differentiation in Drosophila midgut during metamorphosis. Development 139(21), 3917-3925.

 

14.Zeng, X., and Hou, S. X. (2011). Kidney stem cells found in adult zebrafish. Cell Stem Cell 8(3), 247-249.

 

15.   Singh, S. R., Zeng, X., Zheng, Z., and Hou, S. X. (2011). The adult Drosophila gastric and stomach organs are maintained by a multipotent stem cell pool at the foregut/midgut junction in the cardia (proventriculus). Cell Cycle 10(7), 1109-1120

 

16.   Ande, S., Orri, K., Chen, X., Coppola, V., Tessarollo, L., Keller, J. R., and Hou, S. X. (2010).  RapGEF2 is essential for embryonic hematopoiesis but dispensable for adult hematopoiesis.   Blood. 116, 2921-2931.

 

17.   Singh, S. R., Liu, W., and Hou, S. X. (2007).  The adult Drosophila Malpiphian Tubules are maintained by multipotent stem cells.  Cell Stem Cell1(2), 191-203.

 

18.  Singh, S. R., Zhen, W., Zheng, Z. Y., Wang, H.,  Oh, S. W., Liu, W., Zbar, B., Schmidt, L. S., and Hou, S. X. (2006).The Drosophila homologue of the human tumor suppressor gene BHD interacts with the JAK-STAT and Dpp signaling pathways in regulating male germline stem cell maintenance. Oncogene 25, 5933-5941.

 

19.   Wang, H., Singh, S. R., Zheng, Z. Y., Oh, S. W., Chen, X., Edwards, K., and Hou, S. X. (2006).  A Rap-GEF/Rap GTPase signaling controls stem cell maintenance through regulating adherens  junction positioning and cell adhesion in Drosophila testis.  Dev. Cell 10, 117-126.

 

20.   Singh, S. R., Chen, X., and Hou, S. X. (2005).  JAK/STAT signaling regulates tissue outgrowth and male germline stem cell fate in Drosophila.  Cell Research 15(1), 1-5.

 

21.   Chen, X.,  Oh, S. W.,  Zheng, Z.,  Chen, H. W., Shin, H. H., and  Hou, S. X. (2003).Cyclin D-Cdk4 and Cyclin E-Cdk2 regulate the JAK/STAT signal transduction pathway in Drosophila.  Dev. Cell 4, 179-190.

 

22.   Hou, S. X., Zheng, Z., Chen, X., and Perrimon, N. (2002).  The JAK/STAT pathway in model organisms: Emerging roles in cell movement.  Dev. Cell  3,  765-778.

 

23.   Chen, H. W., Chen, X., Oh, S. W., Marrinissen, M. J., Gutkind, J. S., and Hou, S. X. (2002). mom identifies a receptor for the Drosophila JAK/STAT signal transduction pathway and encodes a protein distantly related to the mammalian cytokine receptor family. Genes Dev. 16, 388-398, 2002.

 

24.   Hou, S. X., Goldstein, E. S., and Perrimon, N. (1997). Drosophila Jun relays the JNK signal transduction pathway to the DPP signal transduction pathway in regulating epithelial cell sheet movement. Genes  Dev. 11, 1728-1737, 1997.

 

25.   Hou, S. X., Melnick, M. B., and Perrimon, N. (1996). Marelle acts downstream of the Drosophila Hop/JAK kinase and encodes a protein similar to the mammalian STATs.  Cell  84, 411-419.

 

26.   Hou, S. X., Chou, T. B., Melnick, M. B., and Perrimon, N.(1995).  The torso receptor tyrosine kinase activates raf in a Ras-independent pathway. Cell  81, 63-71.


Baidu
map